Fun2Mas: the Milan Robocup Team

Andrea Bonarini¹, Giovanni Invernizzi¹, Fabio Marchese², Matteo Matteucci¹, Marcello Restelli¹, and Domenico Sorrenti²

¹ DEI – Politecnico di Milano, Milan, Italy
{bonarini,invernizzi,matteucci,restelli}@elet.polimi.it
² DISCO – Università degli Studi di Milano - Bicocca, Milan, Italy
{marchese,sorrenti}@disco.unimib.it

Abstract. We present Fun2mas, the Milan Robocup Team. In its implementation we have faced many aspects: hardware (electronics, mechanics), sensors (omnidirectional vision), behaviors (fuzzy behavior management and composition), multi-agent coordination (strategy and tactics), and adaptation of the team behavior. We could fully exploit the characteristics of all the components thanks to the modular design approach we have adopted. All the modules have also been designed to be used in generic applications, and we have already adopted most of them for surveillance, mapping, guidance, and document delivery tasks.

1 Introduction

Fun2mas ("[Let's] Fun to Multi-Agent Systems !!"), the Milan Robocup Team, is born from the experience gained with the Italian National Team (ART [1]) since 1998. In this paper, we summarize our results concerning: development of robot bases, omnidirectional vision [4][2][9][10], fuzzy behavior management systems [6], architecture for multi-agent coordination [8], and techniques to adapt the behavior of the team to that of the opponents [7].

2 Hardware

We have implemented both the mechanical and the electronic aspects of our robots. In 1998, we developed the robot base Mo²Ro (Modular Mobile Robot), with two independent traction wheels on the front and a ball pivot on the rear. These robots (Rollit and Rakataa, first and third from the left in figure 1) weight about 30 Kg each, and can run up to 1 m/s. Due to inertia it is impossible to control faster robots with the same kinematics and mass distribution, so we have developed JANUS, a robot base with two independent, central traction wheels and most of the mass placed on them. The name comes from the Roman god with two faces, since this robot is designed to work indifferently in one of the two main directions. In the present implementation, Roban (the second from left in figure 1) can run up to 1.5 m/s. We are implementing on the same basic structure also Ruffon, our new goal keeper, still in the stage shown in front of the robot row,
due to late rule definition. The last robot on the right is Roby(Baggio): it has two independent wheels each mounted on a rotating turret, so to obtain holonomic movement, which fully integrates with our omnidirectional vision system. All the robots are equipped with control and power cards developed in our lab, and a regular PC board, hosting low-cost frame grabber and wireless ethernet. One of the main concerns in the development of these robots has been the cost, which is as low as about 1,100 euros each. We are currently working to improve our mechanical and pneumatic kickers, mainly to obtain special kicking effects, differentiated also on the same robot, in the case of Roban and Roby(Baggio) which can kick from different sides. We are also working on a new low-level control architecture, based on a network of distributed microprocessors, that should replace the present ISA-bus cards.

3 Omnidirectional vision

Sensors play a crucial role for the performance of the robot and strongly influence its design [2]. We have focused on omnidirectional vision, where a camera pointed upward to a revolution mirror can provide a 360 deg image of the robot surroundings, whose characteristic depend on the mirror design. Our first mirror was conical with a spherical center, thus including in the image both distant and close objects. Our second mirror [10][9] is multi-part; we have: in the center the ground image without distortions (square angles appear as square angles), from the second part markers on the robots distant up to 11 meters, from the outer part the position of the ball and other robots when close by. This design exploits at best all the available resolution, and it also makes self-localization fast to compute. The color image is sampled in “receptors”, small sets of 4 pixels (in cross configuration) whose color features are averaged, to obtain robust interpretation [4]. The number of receptors is much smaller than the number of pixels, so that computation is much faster than that needed by complete images, computing angular position and distance of all the elements on the field at 20 Hz. Moreover, each color is defined by collecting patches from the actual images, instead of defining a single interval for each color feature, thus providing a better characterization. We have adopted this approach also in other systems, operat-
ing in indoor environments, that can adapt the color interpretation according to the role the corresponding blobs have in the image.

4 BRIAN & SCARE

BRIAN (Brian Reasonably Implements an Agent Nodle) [6] is the fuzzy behavior management system that we have implemented. To each behavior are associated two sets of fuzzy predicates representing its activating conditions (CANDO conditions), and motivations (WANT conditions). These last may come from evaluation of the current situation, or from our distributed planner, and are used to weight the actions proposed by behaviors. We have developed reactive behaviors (such as GoToGoalWithBall) reaching a good performance in a contest where agents operate most of the time selfishly. In order to achieve coordinated behaviors we are providing our robots with a set of general basic behaviors which can be instantiated by SCARE into higher level behaviors for the whole team, by considering strategies and roles.

SCARE (Scare Coordinates Agents in Robotic Environments) [8] implements all the relevant aspects of the multi-agent cooperation. Agents are assigned to jobs defined in a multi-agent task structure (schema). This makes it possible to perform coordinated actions such as ball-passing and opponent blocking (dropping). The job assignment is done by meta-agents which evaluate opportunity and necessity of undertaking actions, and consider the respective predisposition of agents. Meta-agents are dynamically distributed in the robot network, by taking into account quality of communication and available computational resources. If communication works fine, and one computer has enough resources, the control can be centralized on that computer, whereas, if the network is partitioned, each sub-net (at worst, each robot) has its own specialized, coordination meta-agent. This architecture enables the dynamical reconfiguration of the distributed planner, thus increasing robustness of the whole system.

To support communication among SCARE, BRIAN and the other components of the multi-agent system, we are substituting ETHNOS, the real-time communication system used in ART [1], with DCDT (Device Communities Development Toolkit) an event-driven middleware that gives to any module (including the low level controllers) the capability to exchange messages with any other, in a peer-to-peer setting.

5 Adaptation

We have worked on adaptation in Robocup since last year, when we obtained our first results in a simulated environment [5][3]. The team having even a single robot adapted to a new environment (e.g., opponents with different strategies) was able to score more goals, conceding less. The reinforcement learning algorithm we have implemented evolves populations of behaviors associated with WANT conditions. It tests different motivations for each behavior in different situations, and evaluates the contribution of each behavior to the global action.
We are now working on another adaptation mechanism to be implemented at the SCARE level, so that the team behavior can change dynamically, by changing the mentioned weighting parameters in SCARE, according to alterations in environmental conditions, opposing strategy, faults, etc. Also in this case, we have defined a reinforcement learning algorithm, currently under extensive test.

6 Conclusion

We have briefly summarized our activities in the development of a Robocup team, which span from hardware to adaptation. We adopted an the integrated and modular approach to the an effective team. We also made an effective effort to develop general tools usable in most multi–robot domains. We have adopted modules implemented for Robocup in other applications. In some cases the solutions found for Robocup have been extended to face different aspects of the problem (e.g., person detection). In other cases, results obtained in different domains have been applied also to Robocup; for instance, adaptation to different floor types, implemented for navigation tasks in DEI-Polimi building, can help to automatically tune the vision system also in Robocup.

References

2. A. Bonarini. The body, the mind or the eye, first? In M. Asada M. Veloso, E. Pagello, editor, RoboCup 98–Robot Soccer World Cup III, pages 695–698, Berlin, D, 2000. Springer Verlag.

