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1 Introduction

The overall research goal of GMD´s RoboCup middle-size league team is to increase
both, the controlled speed of mobile robots acting as a team in dynamic environments
and the speed of the development process for robot control systems. Therefore, GMD
started in 1998 to develop a proprietary fast robot platform and in parallel the
development of the integrated Dual Dynamics Design Environment. 
This team description gives some details on the current state of our hardware platform
(February 2001), the control software architecture we use and the design environment
we constructed to specify, simulate, run and test our robots. In addition, we point our
some specific skills of our robots.

2 Hardware Platform

Our robot hardware is a custom-built 2 degree of freedom platform. We use two 20
Watt, high-quality Maxon motors that are mounted on a very solid, mill-cut aluminium
frame. A piezo-gyroscope senses relative changes of heading direction. Obstacle
avoidance is supported by four infrared range detectors and a surrounding ring of
switches integrated into protective bumpers. Our robots kick the ball with a pneumatic
device which is integrated in a ball guidance. 
The goalie has a slightly different sensor configuration. In contrast to the field players,
all sensors are mounted 90 degree turned. Its infrared range detectors point to the back
of the goal. In addition, the kicking device of the goalie has no ball guidance but a
simple plate to kick the ball. 
The computer system of the robot consists of a Pentium PC notebook connected to two
C167 micro controller subsystems for sensor interfaces and actuator drivers. The
communication between the PC and the micro-controllers is via CAN bus. The PC
communicates with other robots or a central PC via wireless LAN.
Our vision system relies on the well-known Newton Lab's Cognachrome system for ball
and goal detection. Since it is mounted on a 360 degree panning unit, we are able to
perform “radar-like” scans of the robots surrounding. The angle encoder of the panning
unit delivers a precise relative angle of each camera picture. 



3 Software Architecture

Our approach to robot programming is based on Dual Dynamics (DD) [1], a
mathematical model for robot behaviors which we developed. It integrates central
aspects of a behavior-based approach with a dynamical systems representation of
actions and goals. Robot behaviors are specified through differential equations, forming
a global dynamical system made of behavior subsystems which interact through
specific coupling and bifurcation-induction mechanisms. Behaviors are organized in
levels where higher levels have a larger time scale than lower levels. Since the
activation of behaviors (activation dynamics) is separated from their actuator control
laws (target dynamics), we named our approach “Dual Dynamics”. An important
feature of DD is that it allows for robust and smooth changes between different behavior
modes, which results in very reactive, fast and natural motions of the robots. Through
the distribution of the overall control task on several simple controllers, we obtain a
very robust overall system behavior.
We couple the behavior systems of the robots by a team communication mechanism.
This allows to establish real-time point-to-point connections between all robots of a
team. Since the behavior systems of the robots are specified as an interrelated set of DD-
models, we are able to identify in advance the data communication flow occurring
during run-time. This allows to synthesize a dedicated communication layer which
efficiently distributes shared variables of several behavior systems between the robots
without any unnecessary protocol overhead. The variables shared between different
behavior systems are simply selected in the graphical specification of a DD-model (see
below).



4 Design Environment

The successful design of robot software requires means to specify, implement and
simulate as well as to run and debug the robot software in real-time on a team of
physical robots. The integrated Dual Dynamics design environment [2][3] we develop
and utilize allows to specify behavior systems as DD-models on a high-level of
abstraction and to synthesize all code artifacts required to make these models operative
in practice: a simulation model, a control program for a real robot including the team
communication layer and set-up parameters for real-time monitoring and tracing.
Specify. The specification and code generation tool DD-Designer comprises a
graphical editor to enter the specification of a DD-model in terms of sensors, actors,
sensor filters and behaviors. Sensor filters and behaviors of a model are further detailed
using the equation editor of DD-Designer. Since the robots of our team operate different
behavior systems, DD-Designer supports concurrent development of a set of behavior
systems. This includes the specification of team communication between these different
models. We use a multi-target code generator to refine DD-models to a hyperlinked,
indexed HTML documentation and all implementation code required by the simulator
DDSim, the robots and the real-time monitoring tool beTee. DD-Designer is based on a
framework generated from a high-level object-oriented meta-model specification [4]. 
Simulate. The Java simulator DDSim is specifically tailored to simulate a team of
robots with different behavior systems on a RoboCup field. The sensor equipment of
each robots may be different and is flexibly specified by a configuration file (using
XML format). The simulation models of the different robots are Java classes which are
completely generated by DD-Designer.
Run. The code for the real robot implements the DD-model in C/C++ code. This code
is again directly derived from the high-level specification edited in the DD-Designer.
Since both artifacts, simulation model and robot control program, are derived from the
same specification, we avoid all problems that occur if a migration from a mathematical
simulation model to a robot control program has to be performed manually.
Test/Analyze. The real-time trace tool beTee allows to capture and analyze internal
variable states of an implemented DD-model in real-time [5]. 

5 Behavior Skills

Dual dynamics behavior systems use symbolic sensors to represent the percepted
environment of the robot. We do not maintain a global world model. Self localization
is performed based on odometry and gyroscope data. Since these data is noisy and
subject to be disturbed by bumping robots or slipping wheels, we compensate odometry
errors by improving the self-localization of our robots using weighted Monte Carlo
sampling [2]. This approach readjusts accumulated odometry data using heading and
distance of the goals as obtained by our vision sub-system and the angle encoder of the
panning unit.
In one of our designed behavior models, a neural network is used to anticipate whether
the ball will be lost in near future. Kicking is then triggered by the behavior system
dependent on the pose of the robot and the activation of its behaviors. 



A second behavior is based on a nonlinear control law for the unicycle kinematic model.
Such law is designed to steer the vehicle on a static or dynamic target (the ball) along a
specified direction (the opponents goal). If the target is static (still ball) the control
signals are smooth in their arguments and the solution guarantees exponential
convergence of the distance and orientation errors to zero. The major advantages of this
approach are that there is no need for path planning and, in principle, there is no need
for global self-localization either.
The behavior system of the goalie consists essentially of a two-dimensional controller,
which tries to maintain a fixed distance to the back of the goal and a certain angle to the
visible ball [6]. If the robot should be hit by opponent robots thus losing its position in
front of the goal, a homing behavior is triggered in order to recover the correct position
and the keep goal behavior is thus restarted.
All these behavior systems are developed, simulated and tested using the DD-Design
Environment. Although our environment was originally targeted to design control
systems using the Dual Dynamics architecture, it proved to be flexible enough to
specify and simulate “classical” controllers and to integrate them seamlessly into a
behavior-based Dual Dynamics architecture [6].
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